
UNCLASSIFIED

AD 401140

DEFENSE DOCUMENTATION CENTER
FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA. VIRGINIA

UNCLASSIFIED



NOTICE: Mhen goverzment or other dravings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibi3ity, nor any
ob34gation 'hatsoever; and the fact that the Govern-
ment my have forzalated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implcation or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



I-

APR 1 1963

(1~A A

MATHEMATICS RESEARCH CENTER

.goal



MATHEMATICS RESEARCH CENTER, UNITED STATES ARMY

THE UNIVERSITY OF WISCONSIN

Contract No..: DA-11-022-ORD-2059

TWO APPLICATIONS OF CHAIN SEQUENCES

TO UNIVALENCE

T. L. Hayden and E. P. Merkes

MRC Technical Summary Report #378
February 1963

Madison, Wisconsin



ABSTRACT

By a reformulation of some classical results on chain sequences,

necessary and sufficient conditions are obtained for each function

FNOz =•z/ +a zo'/l+ a2z/l+ ", where Ian I<k n) n, = , 2,

and {kn} is a fixed chain sequence, to be univalent in the unit disk.

This extends results of Thale, Perron (cf., 0. Perron, Die Lehre von den

Kettenbrnchen, vol. 2, Stuttgart, 1957, p. 148), and others. In addition,

estimates of the starlike radius of the functions F(z) are found. The

second application relates chain sequences to the radii of univalence and

of starlikeness of a class of functions f( z) where the ratio zf'( z) /f( z)

has a certain type of C-fraction expansion. As an illustration of the result,

the question of univalence and starlikeness of suitably nornmalized Bessel

functions is considered.



TWO APPLICATIONS OF CHAIN SEQUENCES TO UNIVALENCE

T. L. Hayden and E. P. Merkes

1. Introduction. A sequence of real numbers k = {kn=
n n=l

for which there exist g 0<g <I, such that k =g (I-g
n -l 0'n-i-" n n ni

for n = 1, 2, ... is called a chain sequence and the numbers gn-l are

the parameters of the sequence. In general, a chain sequence does not

uniquely determine its parameters. However, Wall [15, p. 80] proves

the existence of minimal and maximal parameter sequences, {mn} go

and {Mn}I00 respectively, such that mr< g < M , n = 0, ,2, ... ,
n n 0n n- n

for every parameter sequence {g } 0 of k Throughout this paper, the
n n=0

maximal parameter sequence is a judicious choice, although not a necessary

one unless so stated, in the application of the results.

The concept of a chain sequence was initiated by Pringsheim and

Van Vleck in connection with the question of convergence of certain continued

fractions. In §2 of this paper, these and subsequent results on chain

sequences have been reformulated in a manner suitable for the particular

applications presented here. The first of these applications extends some

Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin,
under Contract No. DA- 1I-022-ORD-2059.
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recent results on univalence of Scott and Merkes [ 7] to a wider class

of functions. In addition, earlier theorems on the starlikeness of these

functions are extended and, in some cases, improved. The second

application is devoted to the univalence and starlikeness of a class

of functions Hf which is defined from the C-fraction expansion of

the ratio zf'( z) /f( z) . The results obtained provide a simple numerical

and theoretical method to estimate the radii of univalence and of starlike-

ness of the class. An application is made in §7 to the Bessel functions

and some recent results on this topic [ 1, 2, 3] are extended and improved.

Moreover, it is easy to apply the method to certain function allied to the

hypergeometric functions by utilizing the continued fraction of Gauss.
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2. A class of bounded continued fractions. Let X = { 00
n n=l

be a sequence of complex numbers such that -= 0 impliesn

X = 0 for p = 1, 2, .... The continued fractionn+p

(2.1) 1 2 n
T+T + -+ + + +I"'

associated with X , is said to be in the class B provided there is a real

number R > I such that, for n = 1, 2, ... , the values of the terminating

continued fraction

Xk ' X'

(.2)1 n
T + T + 1 ÷ " + T

are in the disk I wI < R whenever I ' 1< I < I X , j 1,2.....This

definition relates the sequence X to certain chain sequences. First,

it is convenient to have the following elementary result.

LEMMA 2. 1 Let A and g < I be positive numbers. For all

X in the disk I I < A, the values of s from the transformation

s = 1/(1- X t) lie in the disk IsI < 1/g if and only if the values of

t are in It! < (l-g)/A .
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Proof. Clearly IsI < 1/g if and only if II- X tI > g . Since

Il-X tI >1- ItI I X I > 1-AIti , the sufficiency follows. If t = pei,

where p> (l-g)IA, let X =reoi# where (1-g)/p< r < A. Then

l-).t =l-rp < g sothat IsI > 1/g.

THEOREM 2.1 . The terminating continued fraction

1 1 2 n
(2.3)T + + + + 0,J =, 2, ... ,n,

is in B if and only if there exists real numbers {g In such that
j J=0

0 < gj <1 for J=0,l,...,n-l, 0 <gn < 1 , and

(2.4) I I <_ gi (1-gj ) , J =1, 2, ... ,n .

A non-terminating continued fraction (2. 1) is in B if and only if there exist

real numbers {g } such that 0 < g < 1 and (2.4) holds for all

positive integers n .
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Proof. Suppose (2. 3) is in B. There exists an R > 1 such that

(2.2) isinthedlsk IwI < R whenever JI _I I< , J=X1,, ... ,n.
i -

For each such sequence X' = {'} , define w = I and

1

(2.5) w. = I+ j = 1,2, ... ,n

Put go =I/R. Then 0 < g 0 < 1 and Iw 0 1 < 1/gg0 . Assume that for all

admissable sequences V and for a fixed positive integer j < n,

there exists a g1 1l, 0 < gj.- < 1, such that the values of w 1 in

(2.5) are inthe disk IwI < 1/gj. 1 . By (2.5) and Lemma 2.1, the

values of wj are always in IwI < (1-g l)/X 1 . Since wj 1 (when

IJ +1 = 0) must be in this disk, gj < 1 and IX I < I-gj1 l. Set

gj = Ix j1/(l- gj 1 ) . Then 0 < g. _< 1 . The necessity part of the first

statement in the theorem now follows by induction.

Conversely, let the partial numerators of (2. 3) obey (2. 4) and

let v = {X'}n , be anadmissable sequence. Since I xI < _X I for

J = 1,2, ... ,n , the assumption I wI < I/gj for j < n implies by (2. 4)

and (2.5) that
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lW-ll < _< 1<
- 1- xI In I - 1- Ih.j lI I - gi-I

Also I w n= 1 < 1/gn . By a finite induction, 1w 0I < 1/g0 and the

continued fraction (2. 3) is in B .

The non-terminating case is an immediate consequence of the

previous results and the definition of the class B .

The sufficiency parts of Theorem 2. 1 follow also from a result

of Scott and Wall [10; 15, p. 45]. Because of the simplicity of the proof,

it was included here.

The condition that the continued fraction (2. 1) be in the class B

implies that (2. 2) is in the disk

(2.6) 1 - g0

.w- g(-go) - go(2-g 0 )

Indeed, by ( 2. 5) and Theorem 2. 1

-- 11 < IxY 1Iw•I < l-gj_1

which is equivalent to
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WJ-1 ~ ~ -< gj=-I

I W1.. l - 1 (2 - g- 1 ) -- gj-1(2-gj) =,.

Theorem 2. 1 and the classical convergence criterion of Pringsheim

[9; 15, p. 45] establish the convergence of a continued fraction (2. 1) in the

class B. A stronger result in this direction is the following one due to Lane

and Wall [ 4].

THEOREM 2. 2 . The continued fraction (2. 1) is in B if and only

if the continued fraction

I X' X2 X11 1 2 n
T + T + + + I +

converges whenever I ' I < I< n', n = 1, 2, ..... In this case the convergence

is always absolute convergence.

It is useful for some of the applications to have properties of a class

of continued fractions which is allied to the class B. In order to define this

class, let X = {X } be a sequence of complex numbers such that X = 0
n n=l n

implies X n = 0 for p = 1, 2, .... Then the continued fraction

(2.7) 1 2 n(z 7 1 + T + ""+ 1 +"'

is said to be in the class P when for n = 1, 2, ... the values of

X• I t X I

+ 1 2 n
I + + - + 1
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are in the closed right-half plane Re w > 0 whenever IX <_ I xj I for

j = 1, 2, ... The relation of P to the class B is deduced from the following

result.

LEMMA 2.2. Let A > 0. Forall X in the disk I < A,

Reu > 0, where u =l-Xv, if and only if 1v1 < I/A. In this case

lu-lI <1.

The proof is similar to that of Lemma 2. 1 and is omitted.

In conjunction with the definition of the class B, this shows that

(2. 6) is in P if and only if the continued fraction

1 2 3 xn
T + + + " + 1 +

is in B with an R > 1 such that I x < 1/R. This and Theorem 1. 1 prove

THEOREM 2. 3 . A continued fraction

X 1 1, 2n
1+ 1 + 1 + -"- , j0, J =,2, ... ,n,

is in the class P if and only if there exist numbers {gJ}n= such that

0 < gj < 1, j < =1,2, ... ,n-l, 0 < g < 1, and

(2.8) IxlI- gl' I xj1 < gjl -gI l), j =2,3,...,n.
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The non-terminating continued fraction ( 2. 6) is in P if and only if there

exist numbers {g,}j)l such that 0 < g < I and ( 2. 7) holds for all

positive integers n

It is evident from Theorem 2. 2 and Theorem 2. 3 that (2. 6) is

absolutely convergent when it is in the class P.
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3. Chain sequences and univalence. From results of Leighton

and Scott [5] there is a unique, one-to-one correspondence between formal

power series z + Znc z n and C-fractions
n=n

a 1  a 2  a n
z alz a2z anz

(3.1) F(z) = - 1 I ... 1 n P

where a is a positive integer and a = 0 whenever a = 0 forn p+n p

n = 1, ... . It is convenient to take a = I for n = 0,1,2, ...p+n

when ap = 0 . For a fixed C-fraction (3. 1) , let KF denote the class

of formal power series which correspond to continued fractions of the form

1a a2

a1z a2z az n
(3.2) - - - - " - 1 -

where Ian'I < Ian, n = , 2,.... By Theorem 2. 2, a necessary and

sufficient condition for every f( z) E KF to be analytic in I z I < 1 is

that the continued fraction F(1) , obtained from (3. 1) , be in the class

B. In general the radius of univalence of KF is not one. However, we

have the following result in this direction.
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THEOREM 3.1 . Each f(z) c KF is analytic and univalent in

IzI < I if { l a ] }0 is a chain sequence with maximal parameters
j j=1

Mj = 0,1,, ... , where M 0 * 0 and, in case (3.1) terminates with

th
n partial quotient, M = I for p = 0,1,Z, ... , andMnp

00 2j-I I-M 00 2j l-M
(3.3) A= Z Iu j-v1 il p-M'I + z luj-vj+ I II MpI < 1

j=l p== M j= pp

where

j i-I

(3.4) u.=Z a 2P1 va2=a ,2(3.4) u.3 p=l • 2p-l, v3 =p0• 2p' a 0 =1I, j =1,2,...

Furthermore, if v, < u. < v. for j = 1, 2, there is a function__ _ _ _ _ -- 3 -- 3+1 -- "'" _ ___ _

in KF which is not univalent in z I < R for any R > I .

Proof. Let f( z) e KF correspond to the C-fraction (3. 2) and let

a.z a. 'z a j + 1za'z j+

(3.5) f, 1 (z) = + 3 - - " =1,2.
j-1
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Since { ajI is a chain sequence with 0th maximal parameter M 0

a.
and since Ia.z 'I < lajI for j =1,2,... and Izi <I, it follows

- i

from Theorems 2. 1 and 2. 2 that f( z) f-0 z) and each of the functions

f.. 1 (z) for j = 2,3, ... are analytic in IzI < 1 . From the results of

Section 2, moreover,

(3. 5) 1 < ?y , ~ , ... , IzI < I
z - M._1

From (3.4), vi < Vj+1 for each j so that uj -v 10 or

V. - u. # 0 . Thus the hypothesis (3. 3) implies there is a sequence

n
of positive integers such that R (1 - Mp_1 )/M tends to zero as n

p=l P

tends to oo through this sequence. For brevity only the case where this

sequence contains an infinitude of even integers {2m } is treated. The

other case is similar.

For any two non zero points, z 1 and z 2 , in IzI <1, and each

positive integer m, it is found from (3.5) that

I 1 m uj vi_ vj u 2j- f( Z)(3.7) z [ ) 1  1 z (zI zZ z Z1 z) H at Lz)f(f0(z2) f0(z-) j=1 p=l 1 2

m v. u u vj 2j f(z)f(Z 2 )

-(zI z2z 1-zIt z -R2m+lj~~l p=l P 1lZ2 ml



#378

where u and v are defined by (3. 4) and

(3. 8) R = f U m+I- I v + M Um+l'l II a',fp ZI)fP

(3. 8) R l m+l|Z Z2  f Zm+l(ZI )-ZI z2 f2 m+l(Z)] p a P Zp 2

Since for any pair of positive integers s and t, IZ5 z2 -Zl z5 1 < js-tl Iz - z Z1 2 1 2-

when I zI < i Iz <1, it follows from (3.6), (3.7) and the hypothesis

lati < M (I-M - 1) j = , 2,... that for z z

z I z 2 fo0(Z I)-f 0o(Z2) rn 2j~l 1 = M -
f foZ ) ( I -I < Z )u -vj I p-I

1Z 20-20z j =1 p=l Ip

m 2 I- l- M

. 71 vj +-u rl Mp- 1 + p-I
j= 1 M l p1 pm+l

S p=i pm~

and by (3.8)

2m i-M
IR <_ 2 M-

2m+ =l p

Let m mk so that the right-hand side of the last inequality tends to zero

as mk -6 0. By (3.3), therefore,
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(3.9) Izl Z? f 0(zl) fO(Zz) - 1< A <1 I
z1-z 2 f0 (z2)f 0 (z 2) 1 )

The maximum modulus principle when applied to the limit of the expression

(3.7) as m = mk -0 00, where zI is treated as an independent variable,

shows that strict inequality holds in (3.9) when I zI < 1, Iz 2 < 1.

In particular, f 0 (z1) 0 f 0 (z2 ) for z I O 2  in IzI < 1. This proves

the first part of the theorem.

Let m =mk -0 in (3.7) and then divide by z -z. 2 if

zI z,=z for IZI<1, Iz I < 1, we obtain

22

z 2f(z) 0 u +v -1 2J-1 f(Z) 2Z
0 = - Z (u- v)z H a'[- --

[f0 (z)]2 j=l p=l P Z

Su+v J+l- 2j f (Z)
- (v u )z H a'[I[---]z

j=1j+1 j p=l z
j=l now p =

Suppose now that vj <_ u1 <_ Vj+i for j = 1,2, ... and that
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a1  a7

a IIz a 2 z I a Izn
(3.11) f1(z) - I - ... - I -

which is clearly in KF . From the definition of a maximal parameter sequence

of a chain sequence [15, p. 81], the functions (3.5)for this C-fraction

satisfy

f lal Ia j 1
f(l) -1 - 1 - M- .

Since Ial =M.(I-M, _I), j =1,2, ... , (3.3) and (3.10) show that

f01 1)

[f 0 (1)]2

forthe function f (z) of (3. 11) . Therefore if A = 1, f 0 (z) is not

univalent in any disk I z I < R for R > I . This completes the proof.

This theorem extends results of Thale [13], Perron [8], Scott

and Merkes [ 7]. For results equivalent to those previously obtained,

put a j=a and M = g, 0 < g < 1, for j = 1, 2, ... in Theorem 3. .J J

If a formal power series F( z) corresponds to a J-fraction, it is

often possible to obtain a larger set of univalence of F( z) than that of

Theorem 3. 1 . A result of this kind is given by the next theorem. For
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simplicity, the theorem is stated in terms of the reciprocal variable

- l/z.

THEOREM 3. 2 . Let bn and Pn > 0 be complex numbers for

n =1, 2, ... . Let D be the set of all ý such that K•bni > •n Lfr

all positive integers n . The J-fraction

2 2 21 al a an

(3.12) 1 1 2 n
ý-bI - •-b 2 - ý-b 3 - - -b n

represents an analytic univalent function in D provided

z!o
]a n 12Pn P n+l } n~l

is a chain sequence with maximal parameter sequence

Q0

n n=O M0O

such that

I n 1 -M1

n=l Tn p=l p

The proof is similar to that of Theorem 3. 1 and is, therefore,

omitted.

In particular, when I anI < N/3 , n >13 > 0 , n =1, 2...,

then ( 3. 12) is analytic and univalent in the common part of the regions
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I,-b > %r2 N/2 . This statement includes Thale's results on the J-fraction

[6, 131. Indeed, if Ibn I < M/3, n = l,2, ... , then the domain of univalence

(3.12) is ýI1 > (31F2 N+ 2M)/6. Moreover, if Im b < 0, n :1,, ...2 .

which is the case whenever (3.12) is positive definite, then Im r > \2 N/2

is a domain of univalence of ( 3. 12). Each of these can be shown to be sharp.

For, by a suitable choice of the real number a, the function

2 1 N219 N2/9 N2/9

3(ý-a) - J(ý_a)2 + 4N 2 /9 = -a ý-a + ý-a + ;-a +

whose derivative vanishes at r = a + •/ Ni/2 , is not univalent in a

given open region which properly contains one of these domains of univalence.
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4. Starlikeness and chain sequences. A lower bound for the radius

of starlikeness of the class KF, associated with the C-fraction (3.1), is

given by the following theorem.

THEOREM 4.1 . Each f(z) KF is analytic, univalent, and

00starlike in < I provided a j =a is a chain sequence with

00maximal parameters {M.}j=0 , where M# 0 , and

(4.1) A < ",Mo0 (-Mo)

where A is defined in (3. 3).

Proof. Let f( z) c KF correspond to the C-fraction (3. 2). By

(3.9), where zI -* z 2 =z,

zf,(z) f(z) I < A if(z) Izi < 1
f(z) z - z

This implies Re{zf'(z)/f(z)} > 0 for IzI < I, which is a well-known

chardcterization of -,arlikeness for normalized univalent functions in the unit

disk, provided
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(4.2) cos 0 > A, 0 arg(f( z) /z)

Since by ( 2. 6)

f(z) < I -M 0  izi <i

z M 0 (,-Mo) -- M 0 (2-Mo) - -

it follows that

cos e < NIMo(z- Mo)

which in conjunction with (4. 2) proves the sufficiency of (4. 1) for

starlikeness.

In particular, when Mn = M n n 1,2 M 0 >.60

which improves the lower bound for M0 of (3 - q /3) /2 previously obtained

[ 7]. It is conjectured by the authors that M0 > 2 - %-2-, the lower bound of

M0 for univalence in this case.
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5. Some lemmas from the problem of moments. Before a second

application of chain sequences to univalence is discussed, it is helpful

to have at hand some elementary consequences of the Stieltjes and the

Hausdorff moment problems. For this purpose, let {k }n= be a sequence
n n=l

of positive numbers and let F(z) denote the formal power series which

corresponds to the S-fraction

1 kIz k z knz
(5.1) T+ T + T + + +

From results of Stieltjes, there exists a bounded non-decreasing function

a(t) on 0 < t < 0o such that

00

(5.2) F (z) -I(tz;a) f de Zt
0

The function I(z; a) is analytic for z in the complex plane cut along the

negative real axis [17, p. 3Z8].

LEMMA 3.1 . Let the sequence {k r}n1 be a chain sequence if
n 1n=1

and only if 0 < r < I . Then the formal power series F(z) corresponding

to (5. 1) converges in the disk I z I < 1 and represents a function which is

analytic in the complex plane cut from -oc to -1 along the negative real axis

and which has a singularity at z z -1
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Proof. Since {k ) is a chain sequence, the S-fraction (5. 1)
n

converges and represents an analytic function in the z-plane cut from

-o to -1 along the negative real axis [ 15, p. 46]. Hence the power series

F( z) is convergent for I z I < 1 and there is a bounded non-decreasing

function a(t) on 0 < t < I such that

F(z) = f da (t)
1+ zt

[15, p. 263]. Suppose now a(t) has no point of increase at t = I,

i.e., there is an (, 0 < < 1, such that a(t) is constant on

lI < t < I. This implies

F(z) f da(t) _ I da[(1-t)t]
0 1+ zt 0 1 + t

1 klI /(l -,E k k2;/(l- )

T + I + I + "

where r = (I -,E ) z Results on the Hausdorff moment problem [15, p. 263]

and the last integral representation now imply that {ks/( 1- ) is a

chain sequence. This is contrary to the hypothesis that {k rn is not

n }n =1

a chain sequence for r > I1 Hence a(t) has a point of increase at t =1
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Define

I
1()=f dalt)11(1+5)-t-- 0 < S < O.s) f s)

Clearly P(s) is non-decreasing and, since 1(0) = 0

P(s) >a(l) - ( >0- l~+s"

This function has a point of increase at s = 0. Since

00

it follows from well-known results on Stieltjes transforms [17, p. 337] that

F(z) has a singularity at z = -1

00

LEMMA 3.2 . Suppose that for each r > 0, the sequence {k r}n 0
n n=l

is not a chain sequence. Then the power series F(z) corresponding to

(5. 1) diverges in each neighborhood of zero.

Proof. Suppose that the series

00 00

F(z) = E (- 1 )n a zn f da(t)

n=0 n 0 1 +zt
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where

a n f t n d (t), n -- 0 , 1, .. ,
0

is convergent for I zI < R, R > 0. Then a Rn 0 as n 0. Suppose
n

a(t) has a point of increase at 0oo Then for T > I/R,

a Rn> f (Rt)nda(t) > (RT)n [a(0 - a(T)] > 0.n -
T

Thus a Rn-• 0 as n -* c0. This contradiction shows there is a T > 0n

such that a(t) is constant for T < t < 0. Therefore,

0 T 1
da(t) f de(t) ( da(Ts)
l+zt + l~zt - I+ +s

0 0

+ kl/T k2 /T

+ + 1 +

where • = Tz. From results on the Hausdorff moment problem, the latter

implies {k IT)'1 is a chain sequence, which is contrary to the hypothesis.

Hence the series F( z) is divergent for z # 0
th

If (5. 1) terminates with n-t partial quotient, then this continued

fraction represents a rational function whose poles are negative real. simple,

and have positive residue. Therefore it is found that Lemma 3. 1 remains

valid when the sequence {k I is such that k >0 for P=1,2 .n-1;
p P.-. p
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k = 0 for p = n, n + 1, .... Moreover, for each such sequence,
p

{k rp= is a chain sequence for some r > 0. Hence the hypothesis
p p=O

of Lemma 3. 2 is not fulfilled in this case.
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6. The radii of univalence and of starlikeness of the class f.

Let

00 00

(6.1) f(z) = " n zn zft(z) =n ncn zn c 100
n=l n =1

be formal power series. From the one-to-one correspondence between formal

power series and C-fraction [5] ,

a1  a 2  an
af(z 1 2 zanz

(6.2)
f(z) I - 1 - - 1 -'

where {an} and {an} are respectively sequences of positive integers and

of complex numbers, and the expression on the left is the formal quotient of

the series (6. 1). The continued fraction (6. 2) terminates with k 1h partial

quotient if aj 00 for J =1,2, ... ,k and ak+1 = 0

For a fixed series f( z) as in (6. 1), let IIf denote the class of

Wf

formal power series g(z)= X c* z, c* iO, such that
n=l n

* al * a2 n
zgt(z) a I z a2 z an z

(6.3)
g(z)I - 1 - - 1 -
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where lanI ian< , n l, 2,..., and the sequences (an, {an} are

given in the correspondence (6. 2). Let U(nff) denote the radius of

univalence of the class 1f , i.e., U( f) is the suprema of the r > 0

for which each member of 1I is an analytic univalent function in I z I < r.f
It is agreed to put U(Plf) =0 in case there is a member of 11f which is

not analytic at z = 0. The radius of starlikeness with respect to the origin

S(Elf) is defined in a similar manner. Evidently, U(rlf) > S(pf) > 0 .

Moreover, if g t 11f, then U(Cg) U(Elf) and S(1g) > )

THEOREM 6.1. For a fixed power series f(z) in (6. 1), the

correspondence (6.2) holds. Let r0 be the suprema of the r > 0 for

a
which {Ia Inrn) is a chainsequence. Then r0 < S(Elf) < U(lf).n~~ ~ no00 f

a
Moreover, if the sequence { a I r n)00 is a chain sequence with uniquelyn 0 n=l

determined parameters, then S(flf) = U(Elf) =r 0

Proof. First, it is evident from results on chain sequences [ 15, p. 86]

a 
r0that {Ia 0 rnl is itself a chain sequence. Now if r0 = 0, there is

nothing to prove. If r0 >0, for each g(z) a Elf, the C-fraction expansion

(6. 3) converges in the disk I z I < r0 by Theorem 2. 2. It follows that the

power series zg'( z) /g( z) converges in this disk [5] and, hence, that

g(z) is analytic in I z I< r 0 . Furthermore, when I zI <r 0 the continued

fraction (6. 3) is in the class P of §2 and, therefore,
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Re zl• > 0 I z1 < ro
g(z) 0-

Since g(O) = 0, g'(o) 0 0, this implies that g(z) is univalent and

starlike with respect to the origin [11] for Iz I< r0 . Thus

r0 < SVYf <_ UPYf .

Let fo0 (z) denote the formal series for which

, .l all • 1 a21z 2 a nI n
zfb(z)
folz) - 1 - 1 - - 1 -

00
Then fo(z) e( If {M denotes the maximal parameter sequence

of the chain sequence { I a I r n)l , it is known [ 15, p. 81] that
n 0 n=l

M0 =r 0 f(r 0 )/f(r r0) Since M0= 0 when the parameters are uniquely

determined [15, p. 82], ft(z) has a zero or fo(z) has a singularity

at z = r 0 . In either case, the function f0 (z) is not analytic and univalent

in any disk I zj < R for R > r0 . This proves the last statement of the

theorem.

THEOREM 6. 2 . Let f( z) be a power series (6. 1) and let

az az anz
(6.4) l - - --

f(z) -1 - -I -



¶-28- #378

where a is a positive integer. Then U(llf) = S(flf) -r 0 , where r0

is the suprema of the r > 0 such that { an I ra) is a chain sequence.

if f0 (z) is a function such that

zf•(z) la l- la z- la I1
(6.5) - '2 l- n

f0 (z) 1 1 - -"

then r0 is the smallest non-negative zero or singularity of f•(z)

Proof. By Theorem 6.1, r0 < S(If) < U(Ilf) . If r0 >0,

then by Lemma 5.1 the ratio f 0 ( z)/zf•(z) obtained from (6.5) is

analytic in 1z1 < r 0 and has a singularity at z=r 0 . Thus f•(z)

is analytic and non-zero in I z I < r 0 and has a zero or a singularity

at z = r0 . In any case f 0 ( z) is not analytic and univalent in I z I < R

for any R > r 0 . Therefore, r0 = U(flf) = S(rlf). On the other hand, if

r = 0, the function f0 ( z) is not analytic at z = 0 by Lemma 5. 2 . Hence

u(flf) a S(I f) = 0 in this case and the proof is complete.

In some special cases it is easy to obtain an upper bound for the

radius of starlikeness of the function f(z) itself from the expansion (6. 4).

One such result is given by the next theorem.

THEOREM 6. 3 . Let f( z) be a series (6.1) such that (6. 4) holds.
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If M = sup Ian < (3- ,r,) la I, then f (z) is not starlike in
n>Z _____

Izi < R for R> R0 , where

a31a I - M - a/, 12 - 61a I1IM + M 2

(6.6) R0 = 21a

Proof. If I zI < R, la zaI <_MR < 1/4, n 2, 3,... , by

(6.6). Set g(l-g) =MR0  and

1 + 4i - 4MR0
(6.7) < g =0 < I

Since this implies the continued fraction

a a a
a 2z a 3 z azn zW=T + "-1 + "-1 +'"+ -1- +"'

isintheclass B of §2 for z = R0 , it converges for Izi < R0 by

Theoreml. 2 and Rew > 1/(2-g) by (2.6). Now when

z =R 0 exp(-e/a), where 0 =arg a 1 ,

Re zf'(z) la I aoRe W< 1- 0 < 0
f(z) 10 - ?-g -
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by (6.4), (6.6), and (6.7). Consequently, f(z) is not starlike in any

disk concentric to Iz < Ro with larger radius.
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7. Univalence of Bessel functions. A study of the univalence of

the function F (z) = z VJv( z) , where j (z) is a Bessel function of

order v , was recently initiated by Kreyszig and Todd [3] for v > -1

and by Brown [1, 2] for some complex values of v . Wilf [18] has

simplified the proof of the main result in [ 3] and has replaced some of

the inequalities for the radius of univalence of F V( z) with large v by

asymptotic equalities. These results and extensions of them are corollaries

of the theorems in the previous section of this paper.

From the recurrence formulas [ 16, p. 45]

zJV+l(z) = 2vJ V(z) - zJ Vl(z)

zJ (z) =v J (z) - zJ'(z)
V+l V V

it follows that for v 0 -1, -2, ...

zF' (z) 1 Z-2 (+1) 2/(v+l)(v+2)
(7.1) 2 1 .1

FV(z) I

where F (z) = zl'v Jv (z) . The continued fraction converges throughout

VVthe z-plane except at the zeros of Jb(z) and, therefore, the correspondence

symbol in (7.1) can be replaced by an equality [14; 15, p. 347 ff3.
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THEOREM 7.1 . Lot x = Re v > -1. The radius of starlikeness

1-vPv of Fv (z) = z Jv(z) is not less than the smallest positive zero of

Fx(z). Moreover.

(7.2) p >_ 21V+ l(- (1
1 + zv+ 21[1- l/Z1 v + 31]

and

2

(7.3) lim -- = 2v - -0 IVI

Proof. Since Iv+nl > x+n > 0 for n=l,2,..., F(z) isin

the class 11Fx In view of the fact that Fx(z) is an entire function, the

first part of the theorem is now a consequence of Theorem 6. 2.

Let Iz: ( r, where r is the quantity on the right-hand side of the

inequality (7.2). Put

r =r- 1 (1.,
Sg l 1v+l 1+ 21[11- I/21v+31J +l

2
gn+I~~~l~.. nu, 2, ...9nl 41v + nl Iv + n+ 11(1-g PnW)s2
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Since Iv+n+lI > Iv+nj for n=l,2,..., theassumption O< gn-l -C,

0 < gn :! gn-2 (1, n> 2, implies

2
0 <gn r = 1 .

- 4Iv + n-1 Iv + n-21(l1-g nn2)

Now gI > g3 = Iv + lIg/Iv+ zl and 0< g, =1- i/I2Iv+31 1 I

It follows by induction that 0 < gn < I for n = 1, 2, ... and, therefore,

that the sequence r 2/z2v +i , r 2/4v+ll Iv+ 21, ... isachain sequence.

Consequently r < r 0 , where r0 is defined in Theorem 6. 2. Since p V ro

(7. 2) is now proved.

Finally, for I v + z2 > (3 + 2'15) I2

M = SUp 
<

n > 2 41v + nj Iv + n + 1I 41v + 11 IV + ?l - 21v + I1

By Theorem 6. 3, this implies

2 _ _ _ _
PV < 3 3------

IV + iI - 1,+ 21 IV + 21 41 v + 2l 2

(7.3) is a consequence of this and (7.2).
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For real v > -l , the bound in (7.2) appears to be a good estimate

of p . Indeed, it is easy to show by the method used in the proof of

Theorem 6.3 that Re(z oF(z )/F V 0 when Y > -l and

z2 1z0 = 2(i+ 1)(l- 2(v + 2) + 1

Theorem 6. z and ( 7. 1) can be used to obtain information on

univalence and starlikeness of F V(z) when Re v < -1. Moreover, it

is possible to obtain from the continued fraction of Gauss [15, p. 347]

analogues of the preceeding results for the confluent hypergeometric

functions 1F (z; a, b).
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